Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Proc Natl Acad Sci U S A ; 120(21): e2217119120, 2023 05 23.
Article in English | MEDLINE | ID: covidwho-2312891

ABSTRACT

Occurrence of hyperglycemia upon infection is associated with worse clinical outcome in COVID-19 patients. However, it is still unknown whether SARS-CoV-2 directly triggers hyperglycemia. Herein, we interrogated whether and how SARS-CoV-2 causes hyperglycemia by infecting hepatocytes and increasing glucose production. We performed a retrospective cohort study including patients that were admitted at a hospital with suspicion of COVID-19. Clinical and laboratory data were collected from the chart records and daily blood glucose values were analyzed to test the hypothesis on whether COVID-19 was independently associated with hyperglycemia. Blood glucose was collected from a subgroup of nondiabetic patients to assess pancreatic hormones. Postmortem liver biopsies were collected to assess the presence of SARS-CoV-2 and its transporters in hepatocytes. In human hepatocytes, we studied the mechanistic bases of SARS-CoV-2 entrance and its gluconeogenic effect. SARS-CoV-2 infection was independently associated with hyperglycemia, regardless of diabetic history and beta cell function. We detected replicating viruses in human hepatocytes from postmortem liver biopsies and in primary hepatocytes. We found that SARS-CoV-2 variants infected human hepatocytes in vitro with different susceptibility. SARS-CoV-2 infection in hepatocytes yields the release of new infectious viral particles, though not causing cell damage. We showed that infected hepatocytes increase glucose production and this is associated with induction of PEPCK activity. Furthermore, our results demonstrate that SARS-CoV-2 entry in hepatocytes occurs partially through ACE2- and GRP78-dependent mechanisms. SARS-CoV-2 infects and replicates in hepatocytes and exerts a PEPCK-dependent gluconeogenic effect in these cells that potentially is a key cause of hyperglycemia in infected patients.


Subject(s)
COVID-19 , Hyperglycemia , Humans , COVID-19/complications , SARS-CoV-2 , Gluconeogenesis , Blood Glucose , Retrospective Studies , Hepatocytes , Hyperglycemia/complications , Glucose
2.
J Clin Invest ; 133(12)2023 06 15.
Article in English | MEDLINE | ID: covidwho-2303782

ABSTRACT

Patients with severe COVID-19 develop acute respiratory distress syndrome (ARDS) that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that complement component 5a (C5a), through its cellular receptor C5aR1, has potent proinflammatory actions and plays immunopathological roles in inflammatory diseases, we investigated whether the C5a/C5aR1 pathway could be involved in COVID-19 pathophysiology. C5a/C5aR1 signaling increased locally in the lung, especially in neutrophils of critically ill patients with COVID-19 compared with patients with influenza infection, as well as in the lung tissue of K18-hACE2 Tg mice (Tg mice) infected with SARS-CoV-2. Genetic and pharmacological inhibition of C5aR1 signaling ameliorated lung immunopathology in Tg-infected mice. Mechanistically, we found that C5aR1 signaling drives neutrophil extracellular traps-dependent (NETs-dependent) immunopathology. These data confirm the immunopathological role of C5a/C5aR1 signaling in COVID-19 and indicate that antagonists of C5aR1 could be useful for COVID-19 treatment.


Subject(s)
COVID-19 , Extracellular Traps , Humans , Animals , Mice , COVID-19/genetics , COVID-19/pathology , Extracellular Traps/metabolism , COVID-19 Drug Treatment , SARS-CoV-2/metabolism , Lung/pathology , Complement C5a/genetics , Complement C5a/metabolism
3.
Respir Res ; 24(1): 66, 2023 Mar 02.
Article in English | MEDLINE | ID: covidwho-2285425

ABSTRACT

BACKGROUND: COVID-19 is characterized by severe acute lung injury, which is associated with neutrophil infiltration and the release of neutrophil extracellular traps (NETs). COVID-19 treatment options are scarce. Previous work has shown an increase in NETs release in the lung and plasma of COVID-19 patients suggesting that drugs that prevent NETs formation or release could be potential therapeutic approaches for COVID-19 treatment. METHODS: Here, we report the efficacy of NET-degrading DNase I treatment in a murine model of COVID-19. SARS-CoV-2-infected K18-hACE2 mice were performed for clinical sickness scores and lung pathology. Moreover, the levels of NETs were assessed and lung injuries were by histopathology and TUNEL assay. Finally, the injury in the heart and kidney was assessed by histopathology and biochemical-specific markers. RESULTS: DNase I decreased detectable levels of NETs, improved clinical disease, and reduced lung, heart, and kidney injuries in SARS-CoV-2-infected K18-hACE2 mice. Furthermore, our findings indicate a potentially deleterious role for NETs lung tissue in vivo and lung epithelial (A549) cells in vitro, which might explain part of the pathophysiology of severe COVID-19. This deleterious effect was diminished by the treatment with DNase I. CONCLUSIONS: Together, our results support the role of NETs in COVID-19 immunopathology and highlight NETs disruption pharmacological approaches as a potential strategy to ameliorate COVID-19 clinical outcomes.


Subject(s)
Acute Lung Injury , COVID-19 , Extracellular Traps , Animals , Humans , Mice , SARS-CoV-2 , COVID-19 Drug Treatment , Disease Models, Animal , Neutrophils , Deoxyribonuclease I/pharmacology , Deoxyribonuclease I/therapeutic use
4.
J Infect Dis ; 227(12): 1364-1375, 2023 06 15.
Article in English | MEDLINE | ID: covidwho-2244651

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection triggers activation of the NLRP3 inflammasome, which promotes inflammation and aggravates severe COVID-19. Here, we report that SARS-CoV-2 induces upregulation and activation of human caspase-4/CASP4 (mouse caspase-11/CASP11), and this process contributes to NLRP3 activation. In vivo infections performed in transgenic hACE2 humanized mice, deficient or sufficient for Casp11, indicate that hACE2 Casp11-/- mice were protected from disease development, with the increased pulmonary parenchymal area, reduced clinical score of the disease, and reduced mortality. Assessing human samples from fatal cases of COVID-19, we found that CASP4 was expressed in patient lungs and correlated with the expression of inflammasome components and inflammatory mediators, including CASP1, IL1B, IL18, and IL6. Collectively, our data establish that CASP4/11 promotes NLRP3 activation and disease pathology, revealing a possible target for therapeutic interventions for COVID-19.


Subject(s)
COVID-19 , Inflammasomes , Mice , Animals , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Macrophages/metabolism , COVID-19/metabolism , SARS-CoV-2/metabolism , Mice, Transgenic
6.
Nat Commun ; 13(1): 5722, 2022 09 29.
Article in English | MEDLINE | ID: covidwho-2050376

ABSTRACT

Visceral adiposity is a risk factor for severe COVID-19, and a link between adipose tissue infection and disease progression has been proposed. Here we demonstrate that SARS-CoV-2 infects human adipose tissue and undergoes productive infection in fat cells. However, susceptibility to infection and the cellular response depends on the anatomical origin of the cells and the viral lineage. Visceral fat cells express more ACE2 and are more susceptible to SARS-CoV-2 infection than their subcutaneous counterparts. SARS-CoV-2 infection leads to inhibition of lipolysis in subcutaneous fat cells, while in visceral fat cells, it results in higher expression of pro-inflammatory cytokines. Viral load and cellular response are attenuated when visceral fat cells are infected with the SARS-CoV-2 gamma variant. A similar degree of cell death occurs 4-days after SARS-CoV-2 infection, regardless of the cell origin or viral lineage. Hence, SARS-CoV-2 infects human fat cells, replicating and altering cell function and viability in a depot- and viral lineage-dependent fashion.


Subject(s)
COVID-19 , SARS-CoV-2 , Adipose Tissue , Angiotensin-Converting Enzyme 2 , Cytokines , Humans
7.
Sci Adv ; 8(37): eabo5400, 2022 09 16.
Article in English | MEDLINE | ID: covidwho-2029457

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces mild or asymptomatic COVID-19 in most cases, but some patients develop an excessive inflammatory process that can be fatal. As the NLRP3 inflammasome and additional inflammasomes are implicated in disease aggravation, drug repositioning to target inflammasomes emerges as a strategy to treat COVID-19. Here, we performed a high-throughput screening using a 2560 small-molecule compound library and identified FDA-approved drugs that function as pan-inflammasome inhibitors. Our best hit, niclosamide (NIC), effectively inhibits both inflammasome activation and SARS-CoV-2 replication. Mechanistically, induction of autophagy by NIC partially accounts for inhibition of NLRP3 and AIM2 inflammasomes, but NIC-mediated inhibition of NAIP/NLRC4 inflammasome are autophagy independent. NIC potently inhibited inflammasome activation in human monocytes infected in vitro, in PBMCs from patients with COVID-19, and in vivo in a mouse model of SARS-CoV-2 infection. This study provides relevant information regarding the immunomodulatory functions of this promising drug for COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , Inflammasomes , Animals , Humans , Immunomodulating Agents , Mice , NLR Family, Pyrin Domain-Containing 3 Protein , SARS-CoV-2
8.
ACS Sens ; 7(9): 2645-2653, 2022 Sep 23.
Article in English | MEDLINE | ID: covidwho-2016555

ABSTRACT

The quantum-rate model predicts a rate k as a frequency for transporting electrons within molecular structures, which is governed by the ratio between the quantum of conductance G and capacitance Cq, such that k = G/Cq. This frequency, as measured in a single-layer graphene appropriately modified with suitable biological receptors, can be applied as a transducer signal that ranges sensitivities within the attomole for biosensing applications. Here, we applied this label-free and reagentless biosensing transducer signal methodology for the qualitative diagnosis of COVID-19 infections, where this assay methodology was shown to be similar to the gold-standard real-time polymerase chain reaction. The quantum-rate strategy for the diagnosis of COVID-19 was performed by combining the response of the interface for detecting the S and N proteins of SARS-CoV-2 virus as accessed from nasopharyngeal/oropharyngeal patient samples with 80% of sensitivity and 77% of specificity. As a label-free and reagentless biosensing platform, the methodology is decidedly useful for point-of-care and internet-of-things biological assaying technologies, not only because of its real-time ability to measure infections but also because of the capability for miniaturization inherent in reagentless electrochemical methods. This approach effectively permits the rapid development of biological assays for surveillance and control of endemics and pandemics.


Subject(s)
COVID-19 , Graphite , COVID-19/diagnosis , COVID-19 Testing , Humans , Pandemics , SARS-CoV-2
9.
Drug Dev Res ; 83(7): 1623-1640, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1999851

ABSTRACT

The global emergence of coronavirus disease 2019 (COVID-19) has caused substantial human casualties. Clinical manifestations of this disease vary from asymptomatic to lethal, and the symptomatic form can be associated with cytokine storm and hyperinflammation. In face of the urgent demand for effective drugs to treat COVID-19, we have searched for candidate compounds using in silico approach followed by experimental validation. Here we identified celastrol, a pentacyclic triterpene isolated from Tripterygium wilfordii Hook F, as one of the best compounds out of 39 drug candidates. Celastrol reverted the gene expression signature from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected cells and irreversibly inhibited the recombinant forms of the viral and human cysteine proteases involved in virus invasion, such as Mpro (main protease), PLpro (papain-like protease), and recombinant human cathepsin L. Celastrol suppressed SARS-CoV-2 replication in human and monkey cell lines and decreased interleukin-6 (IL-6) secretion in the SARS-CoV-2-infected human cell line. Celastrol acted in a concentration-dependent manner, with undetectable signs of cytotoxicity, and inhibited in vitro replication of the parental and SARS-CoV-2 variant. Therefore, celastrol is a promising lead compound to develop new drug candidates to face COVID-19 due to its ability to suppress SARS-CoV-2 replication and IL-6 production in infected cells.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Coronavirus 3C Proteases , Pentacyclic Triterpenes , Humans , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Interleukin-6 , Molecular Docking Simulation , Pentacyclic Triterpenes/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
10.
Vascul Pharmacol ; 142: 106946, 2022 02.
Article in English | MEDLINE | ID: covidwho-1991342

ABSTRACT

BACKGROUND AND PURPOSE: Mitochondria play a central role in the host response to viral infection and immunity, being key to antiviral signaling and exacerbating inflammatory processes. Mitochondria and Toll-like receptor (TLR) have been suggested as potential targets in SARS-CoV-2 infection. However, the involvement of TLR9 in SARS-Cov-2-induced endothelial dysfunction and potential contribution to cardiovascular complications in COVID-19 have not been demonstrated. This study determined whether infection of endothelial cells by SARS-CoV-2 affects mitochondrial function and induces mitochondrial DNA (mtDNA) release. We also questioned whether TLR9 signaling mediates the inflammatory responses induced by SARS-CoV-2 in endothelial cells. EXPERIMENTAL APPROACH: Human umbilical vein endothelial cells (HUVECs) were infected by SARS-CoV-2 and immunofluorescence was used to confirm the infection. Mitochondrial function was analyzed by specific probes and mtDNA levels by real-time polymerase chain reaction (RT-PCR). Inflammatory markers were measured by ELISA, protein expression by western blot, intracellular calcium (Ca2+) by FLUOR-4, and vascular reactivity with a myography. KEY RESULTS: SARS-CoV-2 infected HUVECs, which express ACE2 and TMPRSS2 proteins, and promoted mitochondrial dysfunction, i.e. it increased mitochondria-derived superoxide anion, mitochondrial membrane potential, and mtDNA release, leading to activation of TLR9 and NF-kB, and release of cytokines. SARS-CoV-2 also decreased nitric oxide synthase (eNOS) expression and inhibited Ca2+ responses in endothelial cells. TLR9 blockade reduced SARS-CoV-2-induced IL-6 release and prevented decreased eNOS expression. mtDNA increased vascular reactivity to endothelin-1 (ET-1) in arteries from wild type, but not TLR9 knockout mice. These events were recapitulated in serum samples from COVID-19 patients, that exhibited increased levels of mtDNA compared to sex- and age-matched healthy subjects and patients with comorbidities. CONCLUSION AND APPLICATIONS: SARS-CoV-2 infection impairs mitochondrial function and activates TLR9 signaling in endothelial cells. TLR9 triggers inflammatory responses that lead to endothelial cell dysfunction, potentially contributing to the severity of symptoms in COVID-19. Targeting mitochondrial metabolic pathways may help to define novel therapeutic strategies for COVID-19.


Subject(s)
COVID-19 , DNA, Mitochondrial , Animals , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Endothelial Cells/metabolism , Humans , Mice , Mitochondria/metabolism , SARS-CoV-2 , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism
11.
Crit Care ; 26(1): 206, 2022 07 07.
Article in English | MEDLINE | ID: covidwho-1923570

ABSTRACT

BACKGROUND: The release of neutrophil extracellular traps (NETs) is associated with inflammation, coagulopathy, and organ damage found in severe cases of COVID-19. However, the molecular mechanisms underlying the release of NETs in COVID-19 remain unclear. OBJECTIVES: We aim to investigate the role of the Gasdermin-D (GSDMD) pathway on NETs release and the development of organ damage during COVID-19. METHODS: We performed a single-cell transcriptome analysis in public data of bronchoalveolar lavage. Then, we enrolled 63 hospitalized patients with moderate and severe COVID-19. We analyze in blood and lung tissue samples the expression of GSDMD, presence of NETs, and signaling pathways upstreaming. Furthermore, we analyzed the treatment with disulfiram in a mouse model of SARS-CoV-2 infection. RESULTS: We found that the SARS-CoV-2 virus directly activates the pore-forming protein GSDMD that triggers NET production and organ damage in COVID-19. Single-cell transcriptome analysis revealed that the expression of GSDMD and inflammasome-related genes were increased in COVID-19 patients. High expression of active GSDMD associated with NETs structures was found in the lung tissue of COVID-19 patients. Furthermore, we showed that activation of GSDMD in neutrophils requires active caspase1/4 and live SARS-CoV-2, which infects neutrophils. In a mouse model of SARS-CoV-2 infection, the treatment with disulfiram inhibited NETs release and reduced organ damage. CONCLUSION: These results demonstrated that GSDMD-dependent NETosis plays a critical role in COVID-19 immunopathology and suggests GSDMD as a novel potential target for improving the COVID-19 therapeutic strategy.


Subject(s)
COVID-19 Drug Treatment , Extracellular Traps , Animals , Disulfiram/metabolism , Extracellular Traps/metabolism , Mice , Neutrophils/metabolism , SARS-CoV-2
12.
J Med Virol ; 94(9): 4170-4180, 2022 09.
Article in English | MEDLINE | ID: covidwho-1826058

ABSTRACT

We adopted the reverse-transcriptase-loop-mediated isothermal amplification (RT-LAMP) to detect severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) in patient samples. Two primer sets for genes N and Orf1ab were designed to detect SARS-CoV-2, and one primer set was designed to detect the human gene Actin. We collected prospective 138 nasopharyngeal swabs, 70 oropharyngeal swabs, 69 salivae, and 68 mouth saline wash samples from patients suspected to have severe acute respiratory syndrome (SARS) caused by SARS-CoV-2 to test the RT-LAMP in comparison with the gold standard technique reverse-transcription quantitative polymerase chain reaction  (RT-qPCR). The accuracy of diagnosis using both primers, N5 and Orf9, was evaluated. Sensitivity and specificity for diagnosis were 96% (95% confidence interval [CI]: 87-99) and 85% (95% CI: 76-91) in 138 samples, respectively. Accurate diagnosis results were obtained only in nasopharyngeal swabs processed via extraction kit. Accurate and rapid diagnosis could aid coronavirus disease 2019 (COVID-19) pandemic management by identifying, isolating, and treating patients rapidly.


Subject(s)
COVID-19 , SARS-CoV-2 , Brazil , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques/methods , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Prospective Studies , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
13.
J Mol Cell Biol ; 14(4)2022 08 17.
Article in English | MEDLINE | ID: covidwho-1806451

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a hyperinflammatory state and lymphocytopenia, a hallmark that appears as both signature and prognosis of disease severity outcome. Although cytokine storm and a sustained inflammatory state are commonly associated with immune cell depletion, it is still unclear whether direct SARS-CoV-2 infection of immune cells could also play a role in this scenario by harboring viral replication. We found that monocytes, as well as both B and T lymphocytes, were susceptible to SARS-CoV-2 infection in vitro, accumulating double-stranded RNA consistent with viral RNA replication and ultimately leading to expressive T cell apoptosis. In addition, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from coronavirus disease 2019 (COVID-19) patients. The rates of SARS-CoV-2-infected monocytes in peripheral blood mononuclear cells from COVID-19 patients increased over time from symptom onset, with SARS-CoV-2-positive monocytes, B cells, and CD4+ T lymphocytes also detected in postmortem lung tissue. These results indicated that SARS-CoV-2 infection of blood-circulating leukocytes in COVID-19 patients might have important implications for disease pathogenesis and progression, immune dysfunction, and virus spread within the host.


Subject(s)
COVID-19 , SARS-CoV-2 , Cytokine Release Syndrome , Humans , Leukocytes, Mononuclear , Monocytes
14.
Biomolecules ; 12(5)2022 04 19.
Article in English | MEDLINE | ID: covidwho-1792831

ABSTRACT

Patients with COVID-19 predominantly have a respiratory tract infection and acute lung failure is the most severe complication. While the molecular basis of SARS-CoV-2 immunopathology is still unknown, it is well established that lung infection is associated with hyper-inflammation and tissue damage. Matrix metalloproteinases (MMPs) contribute to tissue destruction in many pathological situations, and the activity of MMPs in the lung leads to the release of bioactive mediators with inflammatory properties. We sought to characterize a scenario in which MMPs could influence the lung pathogenesis of COVID-19. Although we observed high diversity of MMPs in lung tissue from COVID-19 patients by proteomics, we specified the expression and enzyme activity of MMP-2 in tracheal-aspirate fluid (TAF) samples from intubated COVID-19 and non-COVID-19 patients. Moreover, the expression of MMP-8 was positively correlated with MMP-2 levels and possible shedding of the immunosuppression mediator sHLA-G and sTREM-1. Together, overexpression of the MMP-2/MMP-8 axis, in addition to neutrophil infiltration and products, such as reactive oxygen species (ROS), increased lipid peroxidation that could promote intensive destruction of lung tissue in severe COVID-19. Thus, the inhibition of MMPs can be a novel target and promising treatment strategy in severe COVID-19.


Subject(s)
COVID-19 , Matrix Metalloproteinase 2 , HLA-G Antigens , Humans , Immunity , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 8/metabolism , Oxidative Stress , SARS-CoV-2
16.
Front Neurosci ; 15: 674576, 2021.
Article in English | MEDLINE | ID: covidwho-1533688

ABSTRACT

Oropouche virus (OROV) is an emerging arbovirus in South and Central Americas with high spreading potential. OROV infection has been associated with neurological complications and OROV genomic RNA has been detected in cerebrospinal fluid from patients, suggesting its neuroinvasive potential. Motivated by these findings, neurotropism and neuropathogenesis of OROV have been investigated in vivo in murine models, which do not fully recapitulate the complexity of the human brain. Here we have used slice cultures from adult human brains to investigate whether OROV is capable of infecting mature human neural cells in a context of preserved neural connections and brain cytoarchitecture. Our results demonstrate that human neural cells can be infected ex vivo by OROV and support the production of infectious viral particles. Moreover, OROV infection led to the release of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) and diminished cell viability 48 h post-infection, indicating that OROV triggers an inflammatory response and tissue damage. Although OROV-positive neurons were observed, microglia were the most abundant central nervous system (CNS) cell type infected by OROV, suggesting that they play an important role in the response to CNS infection by OROV in the adult human brain. Importantly, we found no OROV-infected astrocytes. To the best of our knowledge, this is the first direct demonstration of OROV infection in human brain cells. Combined with previous data from murine models and case reports of OROV genome detection in cerebrospinal fluid from patients, our data shed light on OROV neuropathogenesis and help raising awareness about acute and possibly chronic consequences of OROV infection in the human brain.

17.
Arch Virol ; 167(1): 183-187, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1491159

ABSTRACT

Viral stability under stress conditions may directly affect viral dissemination, seasonality, and pathogenesis. We exposed airborne viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), mumps virus, coxsackievirus B5, human rhinovirus A16, and respiratory syncytial virus, to different temperatures, UV light exposure time, pH values, and osmotic pressures and measured the remaining viral infectivity. Reduced thermal stability was observed for coxsackievirus B5 at 45 °C, while SARS-CoV-2 demonstrated residual infectivity at 55 °C. UV light exposure was an efficient means of viral inactivation but was less efficient for non-enveloped viruses. Rhinovirus A16 and respiratory syncytial virus demonstrated extreme sensitivity to acid conditions, while SARS-CoV-2, rhinovirus A16, and respiratory syncytial virus were unstable in an alkaline environment. The information obtained in this study will be useful for the development of viral inactivation methods and may be correlated with epidemiological and seasonal viral characteristics.


Subject(s)
COVID-19 , Virus Diseases , Viruses , Humans , SARS-CoV-2 , Virus Inactivation
18.
Cannabis Cannabinoid Res ; 7(5): 658-669, 2022 10.
Article in English | MEDLINE | ID: covidwho-1455213

ABSTRACT

Importance: Owing to its anti-inflammatory properties and antiviral "in vitro" effect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), cannabidiol (CBD) has been proposed as a potential treatment for coronavirus disease 2019 (COVID-19). Objective: To investigate the safety and efficacy of CBD for treating patients with mild to moderate COVID-19. Design: Randomized, parallel-group, double-blind, placebo-controlled clinical trial conducted between July 7 and October 16, 2020, in two sites in Brazil. Setting: Patients were recruited in an emergency room. Participants: Block randomized patients (1:1 allocation ratio-by a researcher not directly involved in data collection) with mild and moderate COVID-19 living in Ribeirão Preto, Brazil, seeking medical consultation, and those who voluntarily agreed to participate in the study. Interventions: Patients received 300 mg of CBD or placebo added to standard symptomatic care during 14 days. Main Outcome and Measure: The primary outcome was reduction or prevention of the deterioration in clinical status from mild/moderate to severe/critical measured with the COVID-19 Scale or the natural course of the resolution of typical clinical symptoms. Primary study outcome was assessed on days 14, 21, and 28 after enrollment. Results: A total of 321 patients were recruited and assessed for eligibility, and 105 were randomly allocated either in CBD (n=49) or in placebo (n=42) group. Ninety-one participants were included in the analysis of efficacy. There were no baseline between-group differences regarding disease severity (χ2=0.025, p=0.988) and median time to symptom resolution (12 days [95% confidence interval, CI, 6.5-17.5] in the CBD group, 9 days [95% CI, 4.8-13.2] in the placebo group [χ2=1.6, p=0.205 by log-rank test]). By day 28, 83.3% in the CBD group and 90.2% in the placebo group had resolved symptoms. There were no between-group differences on secondary measures. CBD was well tolerated, producing mostly mild and transient side effects (e.g., somnolence, fatigue, changes in appetite, lethargy, nausea, diarrhea, and fever), with no significant differences between CBD and placebo treatment groups. Conclusions and Relevance: Daily administration of 300 mg CBD for 14 days failed to alter the clinical evolution of COVID-19. Further trials should explore the therapeutic effect of CBD in patients with severe COVID-19, possibly trying higher doses than the used in our study. Trial Registration: ClinicalTrials.gov identifier NCT04467918 (date of registration: July 13, 2020).


Subject(s)
COVID-19 Drug Treatment , Cannabidiol , Humans , SARS-CoV-2 , Cannabidiol/therapeutic use , Antiviral Agents/adverse effects , Double-Blind Method
19.
Braz J Microbiol ; 52(2): 531-539, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1159186

ABSTRACT

Accurate testing to detect SARS-CoV-2 RNA is key to counteract the virus spread. Nonetheless, the number of diagnostic laboratories able to perform qPCR tests is limited, particularly in developing countries. We describe the use of a virus-inactivating, denaturing solution (DS) to decrease virus infectivity in clinical specimens without affecting RNA integrity. Swab samples were collected from infected patients and from laboratory personnel using a commercially available viral transport solution and the in-house DS. Samples were tested by RT-qPCR, and exposure to infective viruses was also accessed by ELISA. The DS used did not interfere with viral genome detection and was able to maintain RNA integrity for up to 16 days at room temperature. Furthermore, virus loaded onto DS were inactivated, as attested by attempts to grow SARS-CoV-2 in cell monolayers after DS desalt filtration to remove toxic residues. The DS described here provides a strategy to maintain diagnostic accuracy and protects diagnostic laboratory personnel from accidental infection, as it has helped to protect our lab crew.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , RNA Stability/drug effects , RNA, Viral/analysis , SARS-CoV-2/genetics , Specimen Handling/methods , Diagnostic Tests, Routine , Genome, Viral/genetics , Humans , Protein Denaturation/drug effects , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , SARS-CoV-2/drug effects
20.
Life Sci ; 276: 119376, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1157590

ABSTRACT

The severe forms and worsened outcomes of COVID-19 (coronavirus disease 19) are closely associated with hypertension and cardiovascular disease. Endothelial cells express Angiotensin-Converting Enzyme 2 (ACE2), which is the entrance door for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The hallmarks of severe illness caused by SARS-CoV-2 infection are increased levels of IL-6, C-reactive protein, D-dimer, ferritin, neutrophilia and lymphopenia, pulmonary intravascular coagulopathy and microthrombi of alveolar capillaries. The endothelial glycocalyx, a proteoglycan- and glycoprotein-rich layer covering the luminal side of endothelial cells, contributes to vascular homeostasis. It regulates vascular tonus and permeability, prevents thrombosis, and modulates leukocyte adhesion and inflammatory response. We hypothesized that cytokine production and reactive oxygen species (ROS) generation associated with COVID-19 leads to glycocalyx degradation. A cohort of 20 hospitalized patients with a confirmed COVID-19 diagnosis and healthy subjects were enrolled in this study. Mechanisms associated with glycocalyx degradation in COVID-19 were investigated. Increased plasma concentrations of IL-6 and IL1-ß, as well as increased lipid peroxidation and glycocalyx components were detected in plasma from COVID-19 patients compared to plasma from healthy subjects. Plasma from COVID-19 patients induced glycocalyx shedding in cultured human umbilical vein endothelial cells (HUVECs) and disrupted redox balance. Treatment of HUVECs with low molecular weight heparin inhibited the glycocalyx perturbation. In conclusion, plasma from COVID-19 patients promotes glycocalyx shedding and redox imbalance in endothelial cells, and heparin treatment potentially inhibits glycocalyx disruption.


Subject(s)
COVID-19/blood , COVID-19/pathology , Glycocalyx/pathology , Heparin/pharmacology , Aged , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/virology , COVID-19/metabolism , COVID-19 Testing , Case-Control Studies , Cell Adhesion/physiology , Endothelium, Vascular/metabolism , Female , Glycocalyx/metabolism , Glycocalyx/virology , Human Umbilical Vein Endothelial Cells , Humans , Interleukin-1beta/blood , Interleukin-6/blood , Male , Middle Aged , Oxidation-Reduction , SARS-CoV-2 , Thrombosis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL